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ABSTRACT 36 

The lack of knowledge about the relationship between tumor genotypes and therapeutic 37 

responses remains one of the most critical gaps in enabling the effective use of cancer therapies. 38 

Here we couple a multiplexed and quantitative experimental platform with robust statistical 39 

methods to enable pharmacogenomic mapping of lung cancer treatment responses in vivo. The 40 

complex map of genotype-specific treatment responses uncovered that over 20% of possible 41 

interactions show significant resistance or sensitivity. Known and novel interactions were 42 

identified, and one of these interactions, the resistance of KEAP1 mutant lung tumors to 43 

platinum therapy, was validated using a large patient response dataset. These results highlight the 44 

broad impact of tumor suppressor genotype on treatment responses and define a strategy to 45 

identify the determinants of precision therapies. 46 

Significance: An experimental and analytical framework to generate in vivo pharmacogenomic 47 

maps that relate tumor genotypes to therapeutic responses reveals a surprisingly complex map of 48 

genotype-specific resistance and sensitivity. 49 

INTRODUCTION 50 

Efforts over the past decade have generated many novel cancer therapies(1,2). However, 51 

patient responses are heterogeneous, with some patients responding well and others showing 52 

limited or no response(3,4). While it is believed that the genetic complexity of cancer underlies a 53 

significant portion of the variation in therapeutic response, the map of such pharmacogenomic 54 

interactions is currently lacking(5-7). Despite widespread tumor genotyping, only a few driver 55 

mutations currently inform clinical treatment decisions and clinical trial designs(8-10). This is 56 

driven by the fact that we do not yet know which tumor suppressor alterations influence 57 

on July 12, 2021. © 2021 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on July 2, 2021; DOI: 10.1158/0008-5472.CAN-21-0716 

http://cancerres.aacrjournals.org/


3 
 

sensitivity or resistance to specific therapies. The very premise that tumor suppressor genotype 58 

substantially impacts therapeutic responses remains largely untested. 59 

The pharmacogenomic landscape of cancer drug responses has been investigated using 60 

cell lines, patient-derived xenografts (PDXs), and patient treatment outcome data(5,11-14). 61 

However, such genotype-treatment interactions are notoriously difficult to measure using these 62 

systems for four major reasons: the large numbers of driver and passenger mutations, the 63 

observational instead of manipulative nature of the experiments, lack of the appropriate 64 

autochthonous in vivo environment, and the high stochasticity of tumor growth. Specifically, cell 65 

lines grown in vitro lack the appropriate in vivo environment, do not represent all cancer 66 

subtypes, and often carry additional alterations that arise during passaging(15). PDXs and human 67 

cell line transplantation models recapitulate some aspects of in vivo growth, but growth 68 

factor/receptor incompatibility, growth in non-orthotopic sites, and the obligate absence of the 69 

adaptive immune system compromise these approaches(16-18). Furthermore, human tumor-70 

derived systems almost invariably have large numbers of mutations and genomic alterations. 71 

Thus, even large-scale analyses often lack the statistical power to glean cause-and-effect 72 

relationships between individual genomic alterations and therapeutic responses(5,14). The same 73 

logic applies to patient treatment response data, which are generally too limited in scale to 74 

provide sufficient statistical power to confidently associate tumor suppressor genotypes with 75 

metrics of clinical response(19). Such data are particularly sparse for unapproved therapies 76 

(limited to clinical trial results) and are nonexistent for preclinical therapeutic candidates.  77 

A cost-effective system that introduces defined genomic alterations, measures the 78 

response of a large number of isogenic tumors, and recapitulates the in vivo physiological 79 

context could be valuable for uncovering genotype-treatment relationships. Here we present such 80 
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a system based on tumor-barcoding in genetically engineered mouse models. Genetically 81 

engineered mouse models of human cancer are important preclinical models, as they recapitulate 82 

the physiological, tissue, and immunological context of tumor growth(20,21). These models 83 

uniquely enable the introduction of defined genomic alterations into adult somatic cells, which 84 

leads to the generation of autochthonous tumors(20). These tumors can recapitulate the genomic 85 

alterations, gene expression state, histopathology, and therapy-refractive nature of corresponding 86 

human cancers(11,22). Despite the potential value of these models in preclinical translation 87 

studies, the breadth of their utility has been limited in practice by the fact that they are neither 88 

readily scalable nor sufficiently quantitative(23-27). 89 

To increase the scope and precision of in vivo cancer modeling and to assess tumor 90 

suppressor gene function in a multiplexed manner, we previously developed a system that 91 

couples tumor-barcoding with high-throughput barcode sequencing (Tuba-seq)(26). This method 92 

integrates CRISPR/Cas9-based somatic genome engineering and molecular barcoding into well-93 

established Cre/Lox-based genetically engineered mouse models of oncogenic Kras-driven lung 94 

cancer(28).  The initiation of lung tumors with pools of barcoded Lenti-sgRNA/Cre viral vectors 95 

enables the generation of many tumors of different genotypes in parallel. All neoplastic cells 96 

within each clonal tumor have the same two-component barcode, in which an sgID region 97 

identifies the sgRNA and a random barcode (BC) is unique to each tumor. Thus, high-throughput 98 

sequencing of the sgID-BC region from bulk tumor-bearing lungs can quantify the number of 99 

neoplastic cells in each tumor of each genotype(28). Previous Tuba-seq studies quantify tumor 100 

suppressor effects and their interaction with other tumor suppressor genes, focusing only on 101 

comparisons within mice(28-30). Comparisons of tumor distributions across mice are more 102 

challenging and required improvements in accuracy as well as new analytical methods.  103 
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 Here, we optimize multiple key aspects of the Tuba-seq approach. The greatly improved 104 

accuracy in tumor calling enabled us to compare tumor size distributions between groups of 105 

mice, i.e., treated and untreated groups, and to generate a large-scale map that relates tumor 106 

genotype to therapeutic responses in vivo. We developed a new analytical and computational 107 

framework, Pharmacogenomic tumor barcoding with high-throughput barcode sequencing (PGx-108 

Tuba-seq).  We quantify the treatment responses of tens of thousands of oncogenic KRAS-driven 109 

lung tumors of eleven different tumor suppressor genotypes to a diverse panel of therapies, and 110 

uncover a surprisingly complex pharmacogenomic map of resistance and sensitivity. PGx-Tuba-111 

seq represents a more tractable method to uncover the therapeutic response of different tumor 112 

genotypes than previous in vitro and in vivo screening approaches. 113 

MATERIALS AND METHODS 114 

Mice, tumor initiation, and drug treatment 115 

All animal experiments have been approved by Institutional Animal Care at Stanford 116 

University with protocol number 26696. Lung tumors were initiated by intratracheal delivery of 117 

the same lentiviral pools(26). 1.1 x 10
5
 and 2.2 x 10

4
 infectious unit/mouse were administered to 118 

each Kras
LSL-G12D 

(K), R26
LSL-Tomato 

(T)(hereafter KT), and KT;H11
LSL-Cas9

 mouse(31-33), 119 

respectively. Drug treatments were started 15 weeks after tumor initiation. For the main 120 

pharmacogenomic mapping experiment, mice were assigned to eight treatment arms or were left 121 

untreated for 3 weeks (Fig. 1a, Table 1).  122 
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Tuba-seq library generation 123 

Genomic DNA was isolated from bulk tumor-bearing lung tissue from each mouse(26). 124 

Three benchmark control cell lines (~5x10
5
 cells/cell line) were added to each mouse lung 125 

sample prior to lysis to enable the calculation of the absolute cancer cell number within each 126 

tumor(28). To reduce the errors of the Tuba-seq pipeline from orders of magnitudes, we 127 

implemented multiple critical changes to the library preparation, sequencing, and analysis (Table 128 

2-3). Q5 High-Fidelity 2x Master Mix (NEB, M0494X) was used to amplify the sgID-BC region 129 

from 32 µg of genomic DNA(34). To improve sequencing quality, we used unique dual-indexed 130 

primers and added 6-9 random nucleotides (Ns) to the flanking ends of both index primers before 131 

the sequence-specific primer regions(35). The libraries were pooled based on lung weight to 132 

ensure even reading depth and sequenced on an Illumina HiSeq 2500 platform (Admera Health) 133 

with paired-end 150 bp reads.  134 

Processing reads to identify the sgID and barcode and removal of “spurious tumor” 135 

generated by read errors 136 

We required both the forward and reverse sequencing reads to match perfectly within the 137 

BC region. FASTQ files were processed to identify the sgID and BC counts for each tumor. The 138 

sgID region identified the targeted tumor suppressor gene. The number of reads with each unique 139 

sgID-BC in each sample was summed to calculate each putative tumor’s size. PCR and 140 

sequencing errors within the random barcode regions may be misinterpreted as unique tumors. 141 

We used stringent criteria to reduce and even eliminate the effects of PCR and sequencing errors 142 

on tumor calls, greatly reducing the spurious tumor (Fig. 1b, Supplementary Fig. 1a) when 143 

quantifying relative tumor sizes (Fig. 1c, Supplementary Fig. 1b-d), showing larger effect sizes 144 

(Supplementary Fig. 2a-d).  145 
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Developing unbiased procedures for detecting genotype-specific drug effects 146 

Previous Tuba-seq analyses focused on comparing the sizes of tumors of different 147 

genotypes within individual mice (28,30). Such analyses are largely robust to multiple sources of 148 

variation among mice (Supplementary Fig. 3a-d). We needed to compare tumor sizes between 149 

the untreated and the treated group when analyzing genotype-specific drug responses. We used 150 

the same viral pool to initiate tumors in all mice, therefore the relative representation of 151 

transduced epithelial cells containing each Lenti-sgRNA/Cre is constant and does not vary across 152 

mice.  153 

Null model of tumor responses with no genotype-specificity 154 

We assume that the therapy affects all tumors proportionally to their sizes such that the 155 

size of each tumor changes from X to X1 = X × S after the treatment, where S is the proportion of 156 

remaining cancer cells. Under the null model (H0) of no genotype-specific drug responses, S is 157 

constant and does not depend on tumor genotype. Under the alternative model H1, S varies 158 

depending on the genotype: SsgID, j = SInert×(1+Gj), with Gj representing the Genotype Specific 159 

Therapeutic Response (GSTR) of tumors of specific genotypes to the drug j. If Gj > 0, the 160 

inactivation of the tumor suppressor gene confers relative resistance; if Gj < 0, the inactivation of 161 

the tumor suppressor gene confers relative sensitivity.  162 

 The most extreme treatment reduced tumor sizes by ~87%. While the depth of 163 

sequencing varied across mice and treatments, we wanted to reliably identify tumors in each 164 

treated and untreated mouse.  Thus, we chose to use the cutoff of L = 1000 cells in the untreated 165 

mice, allowing reliable detection and accurate size estimates of tumors in each mouse.  166 
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Calculation of proportional size-reduction as the drug effect 167 

To estimate the value of the tumor reduction factor S that leads to the best match between 168 

the distributions of Inert tumors between the treated and untreated group, we calculated the value 169 

of S such that the median number of shrunk tumors across all the untreated mice was closest to 170 

the median of the number of observed tumors with the size above or equal to 1000 cells across 171 

all the mice in the treated group.  172 

Using relative tumor number (ScoreRTN) to estimate GSTR 173 

Our first approach defines response as the number of tumors that exceed a minimum size 174 

threshold (Fig. 2a, b). The null hypothesis for each genotype is that the number of tumors above 175 

the cutoff L in the untreated mice should match the number above the new cutoff L×S in the 176 

treated mice. If a GSTR exists, the tumors with a specific sgID are more resistant to the drug 177 

than the Inert tumors, and more of such tumors should remain above the adjusted cutoff of L×S 178 

than expected, while if they are more sensitive, fewer such tumors should remain above the 179 

adjusted cutoff of L×S.  We first calculate the ratio of the number of tumors above the cutoff L in 180 

the untreated mice of a particular sgID to that of the Inert tumors (RTNi,j,L),  181 

 182 

𝑅𝑇𝑁𝑖,𝑗=𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝐿 =
∑ C𝑖,j=untreated,k𝑘

∑ C𝐼𝑛𝑒𝑟𝑡,j=untreated,k𝑘
 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚𝑖𝑐𝑒 𝑘 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑡𝑢𝑚𝑜𝑟𝑠 𝑒𝑞𝑢𝑎𝑙 𝑜𝑟 𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 𝐿 

where 𝐶𝑖,𝑗,𝑘 is the total number of tumors observed in mouse k in treatment group j (j = untreated 183 

here) carrying sgID i above the cutoff L. We then calculate the similar ratio for the treated mice 184 

with a modified cutoff L×S,  185 
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𝑅𝑇𝑁𝑖,𝑗,𝐿×𝑆 =
∑ C𝑖,j,k𝑘

∑ C𝐼𝑛𝑒𝑟𝑡,j,k𝑘
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚𝑖𝑐𝑒 𝑘 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑡𝑢𝑚𝑜𝑟𝑠 𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 𝐿 × 𝑆 

The null hypothesis can then be expressed as the expectation that  186 

𝑅𝑇𝑁𝑖,𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝐿 =  𝑅𝑇𝑁𝑖,𝑗,𝐿×𝑆 

or alternatively that: 187 

𝑆𝑐𝑜𝑟𝑒𝑅𝑇𝑁𝑖,𝑗 = 𝑙𝑜𝑔2 (
𝑅𝑇𝑁𝑖,𝑗,𝐿×𝑆

𝑅𝑇𝑁𝑖,𝑈𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝐿
) = 0 

Under the alternative hypothesis where 𝑆𝑐𝑜𝑟𝑒𝑅𝑇𝑁𝑖,𝑗 ≠ 0, a positive sign of 𝑆𝑐𝑜𝑟𝑒𝑅𝑇𝑁𝑖,𝑗 188 

suggests that the tumors with a particular sgID are more resistant than the Inert tumors, while a 189 

negative sign suggests the tumors are more sensitive than Inert tumors.  190 

Use relative geometric mean (ScoreRGM) to estimate GSTR 191 

The second metric, ScoreRGM, compares the geometric mean of tumors carrying sgID i 192 

relative to the Inert tumors in the untreated and treated groups (Fig. 2a, c). If we analyze a 193 

comparable number of tumors in the untreated and treated mice, with no GSTR, the relative 194 

growth advantage of tumors carrying a specific sgID (sgID i) relative to Inert tumors, 195 

represented by the relative geometric mean, will remain constant.  If the tumors with a specific 196 

sgID (sgID i) are resistant to the drug, the relative geometric mean for sgID i will be larger in the 197 

treated group, while if sensitive, the relative geometric mean will be smaller. While RTN does 198 

not use the numeric value of tumor size other than comparing it with the cutoff, RGM 199 

incorporates such tumor size profile information. Hence, RGM and RTN are not entirely 200 

redundant as they incorporate different information about GSTR.  201 

We denote the total tumor count (T) with a certain sgRNA (i) in an individual mouse (k) 202 

in the treated group (j) as Ti,j,k. Here, we do not limit tumors to those above 1000 cells but rather 203 
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count any tumor with greater than or equal to 2 reads (after the stringent filtering described 204 

above) as a tumor. For an untreated mouse, the proportion of initiated tumors of each sgID can 205 

be approximated by Ri, the ratio of Ti,untreated,k to TInert,untreated,k: 206 

𝑅𝑖 = median(
𝑇𝑖,𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝑘

𝑇𝐼𝑛𝑒𝑟𝑡,𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝑘
|𝑓𝑜𝑟 𝑎𝑙𝑙  𝑚𝑖𝑐𝑒 𝑘) 

We then take the top N tumors with sgRNA i from mouse k treated by drug j as: 207 

N𝑖,𝑗,𝑘 = C𝑖,𝑗,𝑘 × R𝑖 

where 𝐶𝑖,𝑗,𝑘 is the total number of Inert tumors observed in each mouse above the cutoff 𝐿 × 𝑆 208 

(S=1 for the untreated group), and then we calculate the geometric mean for all tumors 209 

containing the sgID and Inert tumors across all mice in the group. 210 

The score for the relative geometric mean is calculated as: 211 

𝑆𝑐𝑜𝑟𝑒𝑅𝐺𝑀𝑖,𝑗 = 𝐿𝑜𝑔2(

GMi,j

GMInert,j
⁄

GMi,untreated
GMInert,untreated

⁄
) 

where GMi,j is the geometric mean for tumors containing sgID i in treatment group j in the 212 

selected N tumors. Under the null hypothesis, 𝑆𝑐𝑜𝑟𝑒𝑅𝐺𝑀𝑖,𝑗 = 0. Under the alternative 213 

hypothesis where 𝑆𝑐𝑜𝑟𝑒𝑅𝐺𝑀𝑖,𝑗 ≠ 0, a positive sign of 𝑆𝑐𝑜𝑟𝑒𝑅𝐺𝑀𝑖,𝑗 suggests that the tumors 214 

with a particular sgID are more resistant than the Inert tumors, while a negative sign of the score 215 

suggests that these tumors are more sensitive than the Inert tumors.  216 

Calculating ScoreGSTR (�̂�) as the combined score 217 

Although ScoreRTN and ScoreRGM may have an emphasis on different aspects of GSTR 218 

on tumor size distribution, it is helpful to have a single combined score. We calculated a 219 
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combined score of GSTR (�̂�) by taking the inverse variance weighted average of ScoreRTN and 220 

ScoreRGM, then converting it to the linear scale (Fig. 3). 221 

𝑆𝑐𝑜𝑟𝑒𝐺𝑆𝑇𝑅 = (
𝑆𝑐𝑜𝑟𝑒𝑅𝑇𝑁

𝜎𝑆𝑐𝑜𝑟𝑒𝑅𝑇𝑁
2 +

𝑆𝑐𝑜𝑟𝑒𝑅𝐺𝑀

𝜎𝑆𝑐𝑜𝑟𝑒𝑅𝐺𝑀
2 )/(

1

𝜎𝑆𝑐𝑜𝑟𝑒𝑅𝑇𝑁
2 +

1

𝜎𝑆𝑐𝑜𝑟𝑒𝑅𝐺𝑀
2 ) 

�̂� = 2𝑆𝑐𝑜𝑟𝑒𝐺𝑆𝑇𝑅 − 1 

If �̂�>0, GSTR is resistant, and if �̂�<0, GSTR is sensitive. 222 

To be conservative, for the combined score to be called significant, we require at least 223 

one significant P-value (P < 0.05), and one marginally significant P-value (P < 0.1) for the two 224 

statistics ScoreRTN and ScoreRGM.  225 

Comparing with human cell line response database GDSC 226 

The drug sensitivity data from human cell lines were downloaded from the Genomics of 227 

Drug Sensitivity in Cancer (GDSC) database (www.cancerrxgene.org)(5). Due to the limited 228 

number of LUAD cell lines, we focused on comparing the results from Pan-cancer cell lines. All 229 

5 monotherapies used in our study were assessed by GDSC. Except for Keap1 and Rbm10, 230 

which are not reported for everolimus and paclitaxel, the GSTR of all other 51 gene-drug pairs 231 

were quantified by GDSC. The effect size and FDR-corrected P-values were used for 232 

comparison.  233 

Analysis of clinical data for resistance to chemotherapy 234 

Despite relatively widespread genotyping, clinical treatment data and response data are 235 

extremely limited. MSKCC has a tremendous program to genotype patients and to collect 236 

clinical data. Most patients with oncogenic KRAS-driven lung cancer get platinum doublet 237 

therapy as no targeted therapies have been approved. Patients with metastatic or recurrent lung 238 
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adenocarcinoma harboring a KRAS mutation in codons 11, 12, or 61, as detected by MSK-239 

IMPACT (36), were reviewed.  Patients who received platinum chemotherapy (carboplatin or 240 

cisplatin) with pemetrexed +/- bevacizumab as first-line treatment were included (n = 216).  241 

Treatment efficacy was measured as time of first treatment with platinum doublet chemotherapy 242 

to start of next systemic therapy, or death if no subsequent therapy was received.  Patients who 243 

continued on platinum doublet therapy at the last follow-up were censored. The retrospective 244 

chart review was approved by the MSK institutional review board. 245 

Kaplan-Meier estimator plots of time-to-next-treatment for patients with and without 246 

mutations at each of the 11 tumor suppressor genes of interest were generated. In addition, a 247 

multivariable Cox proportional hazards model analysis was performed, integrating the 248 

mutational status of the 11 genes as individual input features to assess the independent effect of 249 

co-occurring mutations.  250 

Data availability statement 251 

The sequencing dataset generated and analyzed during the current study is available in 252 

the Gene Expression Omnibus database (accession code: GSE146448).  Other data and relevant 253 

code are available in https://github.com/lichuan199010/Tuba-seq-analysis-and-summary-254 

statistics.  255 

RESULTS 256 

Development of the PGx-Tuba-seq pipeline 257 

To eliminate sgRNA-sgID/barcode uncoupling due to lentiviral template switching and to 258 

minimize PCR, sequencing, and clustering errors, we made multiple improvements to our Tuba-259 

seq experimental protocols and analysis pipeline (Fig. 1a, Table 2-3, and Methods)(26). We 260 
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initiated lung tumors in Kras
LSL-G12D/+

;Rosa26
LSL-Tomato

;H11
LSL-Cas9 

(KT;H11
LSL-Cas9

) mice and 261 

control Cas9-negative KT mice with a pool of barcoded Lenti-sgRNA/Cre vectors targeting 262 

eleven putative tumor suppressors and four control vectors with inert sgRNAs (Lenti-263 

sgTS
Pool

/Cre; Fig. 1a). To eliminate template switching during lentiviral reverse transcription, we 264 

generated each vector separately and pooled each viral vector immediately prior to tumor 265 

initiation(37). Tumor suppressors were selected based on common occurrence in human lung 266 

adenocarcinomas and previously suggested roles in oncogenesis(26). 18 weeks after tumor 267 

initiation, the sgID-BC region from each bulk tumor-bearing lung was PCR amplified and 268 

sequenced to quantify the number of neoplastic cells in each tumor (Fig. 1a). 269 

Our new analysis pipeline essentially eliminated the impact of read errors, as assessed by 270 

two metrics, including the spurious tumors generated from spike-in barcodes with known 271 

sequences and correspondence of tumor barcodes with those from the lentiviral plasmid pool 272 

(Fig. 1b, Supplementary Fig. 1a).  Quantification of the impact of tumor suppressor gene 273 

inactivation on tumor growth in KT;H11
LSL-Cas9

 mice using our optimized method uncovered 274 

effects that were generally consistent with our previous analyses, but with greater magnitudes of 275 

tumor suppression (Fig. 1c; Supplementary Fig. 1c, d and 2a-d; sign test for differences in 276 

magnitudes, P = 0.001)(28). Consistent with the robustness of our methods, analysis of the KT 277 

mice with Lenti-sgTS
Pool

/Cre-initiated tumor revealed no false-positive tumor suppressive effects 278 

(Supplementary Fig. 1c, d). These technical improvements to the Tuba-seq method further 279 

enhance the ability of this technology to be applied to study a variety of questions in tumor 280 

progression and evolution, as well as quantification of the pharmacogenomic interactions as 281 

performed in this study. 282 
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When quantifying tumor suppressor gene effects using Tuba-seq, each mouse represents 283 

an internally-controlled experiment in which metrics of tumor size can be compared between 284 

tumors of each tumor suppressor genotype and tumors initiated with inert sgRNAs within the 285 

same mouse (Fig. 1c, Supplementary Fig. 1b-d)(26). In contrast, comparing tumor size 286 

distributions between groups of mice, such as between untreated and drug-treated groups, 287 

requires methods that address the technical and biological differences among mice. To 288 

understand the statistical properties and potential biases intrinsic to this type of analysis, we 289 

rigorously modeled drug responses and genotype-specific responses. We initially performed our 290 

modeling with the assumption that cancer cells in tumors of all sizes respond equally to each 291 

treatment, while the treatment effects can vary by genotype. Specifically, we estimated the drug 292 

effect on control tumors (those with inert sgRNAs) and then applied this effect to all tumors to 293 

calculate an expected distribution of tumor sizes after treatment (Fig. 2a and Methods). 294 

Genotype-specific therapeutic responses (GSTRs) were quantified by comparing the observed 295 

distribution of tumor sizes for tumors of a certain genotype after treatment with the expected 296 

distribution derived from the untreated mice. We developed two statistics to characterize GSTRs: 297 

(1) ScoreRTN – Relative Tumor Number, which compares the relative numbers of tumors above 298 

a certain size after treatment; and (2) ScoreRGM – Relative Geometric Mean, which constitutes 299 

the relative change in the geometric mean of tumors from the full distribution of tumor sizes 300 

(Methods). By assessing the performance of the two statistics, we showed that both statistics are 301 

unbiased (Supplementary Fig. 3e-h) and exhibit substantial and similar power (Supplementary 302 

Fig. 4a-c), although one statistic may outperform the other if the genotype-specific response is 303 

not uniform across tumor sizes (Methods, Fig. 2b-c and Supplementary Fig. 5a, b). Moreover, 304 

by performing power analysis and plotting the ROC curves for both statistics across multiple 305 
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sample sizes (i.e., number of mice/group), we confirmed the high sensitivity and specificity of 306 

our system (Fig. 2b, c and Supplementary Fig. 4a-c). We also found that relaxing the 307 

assumption that tumors of all sizes respond proportionally to treatment did not change our results 308 

substantially (Supplementary Fig. 5a-b). 309 

 310 

Complex pharmacogenomic map uncovered using the PGx-Tuba-seq pipeline 311 

We applied Tuba-seq and our statistical metrics to assess the genotype-specific 312 

therapeutic responses of 11 genotypes of lung tumors to a panel of eight single and combination 313 

therapies (Fig. 1a, Fig. 3a, and Table 1). These therapies were chosen to perturb diverse 314 

signaling pathways and assess the genotype-dependency of chemotherapy responses. KT;H11
LSL-315 

Cas9
 mice with Lenti-sgTS

Pool
/Cre-initiated lung tumors were treated for three weeks with one of 316 

the eight therapies followed by Tuba-seq analysis (Fig. 1a and Fig. 3a). The total cancer cell 317 

numbers estimated by Tuba-seq were highly correlated with total tumor-bearing lung weights, 318 

which varied substantially among mice even within the same groups (Supplementary Fig. 6a-c). 319 

Despite expected mouse-to-mouse variations, comparing the overall tumor burden and the 320 

number of tumors with inert sgRNAs in the untreated and treated mice revealed significant 321 

overall therapeutic effects for five out of the eight treatments (Supplementary Fig. 6d).  322 

We compared the tumor size profiles of treated mice with those of untreated mice and 323 

calculated the ScoreRTN and ScoreRGM (Supplementary Fig. 7a). For both statistics, we 324 

estimated the magnitudes of genotype-specific therapeutic responses (GSTRs) and the associated 325 

P-values using bootstrapping. Across all genotypes and treatments, the two statistics were well-326 

correlated in magnitude as expected under the model of proportional tumor responses 327 

(Supplementary Fig. 7b; r = 0.86, P=10
-46

). Among the 88 assessed genotype-treatment pairs, 328 
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20 and 17 significant GSTRs (P < 0.05) were identified by ScoreRTN and ScoreRGM, 329 

respectively. Of these, 19 genotype-treatment interactions were significant by one statistic (P < 330 

0.05) and at least marginally significant (P < 0.1) by the other (Supplementary Fig. 7a, b; 331 

Table S1). We derived a composite measure of GSTR (�̂�) with the magnitude estimated from 332 

the inverse variance weighted average of the two statistics (Methods, Fig. 3b). Analysis of 333 

genotype-specific effects across treatments highlighted similarities among tumor suppressors, 334 

including those of Lkb1 and Setd2 that we have previously suggest to have redundant tumor 335 

suppressive effects
5
. Furthermore, combination treatments clustered with their corresponding 336 

single therapies (Supplementary Fig. 7c, d), and an additive model shows good predictive 337 

power (Supplementary Fig. 7e, f). Power analysis showed that our findings were robust to the 338 

cancer cell number cutoff (Supplementary Fig. 8a), choice of inert sgRNAs (Supplementary 339 

Fig. 8b), and inaccurate estimation of drug effects (Supplementary Fig. 9a, b).  340 

One of the detected GSTRs was well known in advance – the resistance of Rb1-deficient 341 

tumors to the CDK4/6 inhibitor, palbociclib. Our ability to rediscover this interaction serves as a 342 

positive control of our method and is consistent with the expectation that some 343 

pharmacogenomic interactions transcend cancer types (Supplementary Fig 10a-e). This 344 

resistance is consistent with the biochemical features of this pathway (Supplementary Fig. 10f) 345 

and clinical findings in breast cancer and hepatocellular carcinoma(38-40). 346 

To further test the performance of our experimental and statistical procedures, we 347 

performed two additional experiments. First, as a negative control for GSTR identification, we 348 

treated Cas9-negative KT mice with a combination of chemotherapy and Mek-inhibition 349 

(Supplementary Fig. 11a). This treatment led to a dramatic reduction in tumor sizes compared 350 

to untreated KT mice (Supplementary Fig. 11b). Only one false positive GSTR was identified 351 
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(ScoreRTN, P = 0.03; ScoreRGM, P = 0.07) with a very weak magnitude of the effect (�̂� = 352 

0.093, while the minimum magnitude of significant GSTR interactions in the main experiment 353 

was 0.108; Fig. 3c, Supplementary Fig. 11c). Furthermore, none of the individual inert sgRNAs 354 

(sgNeo1, sgNeo2, sgNeo3, and sgNT) had a significant effect by either metric for any of the eight 355 

treatments in our main pharmacogenomic mapping experiment, adding confidence in the veracity 356 

of the detected GSTRs (Fig. 3b, c). 357 

Simulations suggest that these cohort sizes have substantial albeit imperfect power 358 

(Supplementary Fig. 4a-c); therefore, we next attempted to rediscover the genotype-palbociclib 359 

interactions. We initiated tumors in a similar, yet somewhat smaller cohort of KT;H11
LSL-Cas9

 360 

mice with Lenti-sgTS
Pool

/Cre and repeated the palbociclib treatment. Analyses of these mice 361 

again identified Rb1 inactivation as a mediator of palbociclib resistance (Fig. 3d, 362 

Supplementary Fig. 10b). Smad4-deficient tumors, which showed modest resistance in our 363 

initial experiment, showed nominal resistance in the repeat experiment (�̂� = 0.167), although this 364 

interaction was not significant (P = 0.17 and 0.20 for ScoreRTN and ScoreRGM, respectively). 365 

Given the magnitude of this GSTR and our sample sizes, this false negative is not surprising. 366 

Assuming a true positive rate of 80%, which is considered desirable(41,42), when identifying 367 

two genuine GSTR signals (Smad4 and Rb1, for instance) in two independent experiments, the 368 

probability of missing at least one of these findings is 1-80%
4
=59%. 369 

 370 

Multiple sources of evidence confirm the findings of our PGx-Tuba-seq analysis 371 

 Although most of the detected pharmacogenomic interactions we uncovered are novel, 372 

several lines of evidence derived from clinical and preclinical data are consistent with our 373 

observations. For instance, Lkb1-inactivation reduced sensitivity to mTOR inhibition in our data, 374 
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which is supported by a  previous in vitro study(43) and anecdotal data from the analysis of lung 375 

adenocarcinoma patient-derived primary cultures (Supplementary Fig. 12a-c)(12). Moreover, 376 

previous studies have shown that Kras
G12D

;Lkb1
-/- 

lung tumors are sensitive to phenformin(25) 377 

and resistant to MEK inhibition(23). 378 

The ultimate goal of our study was to find genotype-treatment responses that predicted 379 

lung adenocarcinoma patient responses. Lung adenocarcinoma patients are often treated with 380 

first-line platinum-containing combination therapies. In our analysis, Keap1-inactivation led to 381 

resistance to treatments that included carboplatin, while not promoting significant resistance to 382 

the other therapies (Fig. 3b). Interestingly, Keap1-inactivation has been previously suggested to 383 

reduce responses to chemotherapy(44-46). To further investigate the clinical impact of tumor 384 

suppressor genotype on lung adenocarcinoma responses, we queried the tumor suppressor 385 

genotype and therapeutic benefit of platinum-containing treatments (assessed as time-to-next-386 

treatment) of 216 patients with oncogenic KRAS-driven human lung adenocarcinomas treated at 387 

Memorial Sloan Kettering Cancer Center (Methods). When each gene was assessed individually 388 

(Supplementary Fig. 13a-k), both KEAP1 and LKB1 mutations were associated with worse 389 

clinical outcomes (P=6×10
-6

, Fig. 4a and P = 0.06, Supplementary Fig. 13c, j, respectively). 390 

However, the marginally significant effect of LKB1 mutation appears to be driven primarily by 391 

the co-occurrence of KEAP1 and LKB1 mutations(47,48) (Supplementary Fig. 13l). This 392 

finding is also well supported by our pharmacogenomic data in which Lkb1-inactivation did not 393 

confer resistance to platinum-containing treatments (Fig. 3b). We further quantified the hazard 394 

ratio of the mutational status of the 11 genes accounting for the effect of other co-incident 395 

mutations. This analysis confirmed that mutations of KEAP1 correlated with a shorter time-to-396 

next-treatment, which is consistent with our Tuba-seq results as well as a previous study on the 397 
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impact of KEAP1/NRF2-pathway alterations on platinum responses (Fig. 4a, b)(44,49).  Our in 398 

vivo pharmacogenomic platform, in which the responses of tumors with defined genotypes can 399 

be quantified, establishes direct causal relationships between genotype and treatment responses, 400 

and enables accurate interpretation of patient data. 401 

 402 

Comparisons with the cell line and PDX data 403 

While the positive and negative predictive values of cancer cell line studies are often 404 

questioned(50), the scale at which these in vitro studies can be performed has enabled the 405 

generation of drug response data across large panels of cell lines(11,51,52). Our study constitutes 406 

the largest in vivo survey of GSTRs, thus we compared our findings to a study of cell line-407 

therapeutic responses (Genomics of Drug Sensitivity in Cancer; GDSC)(5) in which all five of 408 

our monotherapies were assessed (paclitaxel, palbociclib, phenformin, everolimus/rapamycin, 409 

and trametinib)(5). Among the genotype-treatment pairs assessed in both studies, nine had 410 

significant effects in our analysis, but only one of these genotype-treatment pairs was significant 411 

in GDSC (RB1-palbociclib; Fig. 4c-d and Supplementary Fig. 14a, b). Note that in general we 412 

would not expect excellent agreement between our results and the cell line studies, given the lack 413 

of the autochthonous environment as well as the complexity of genetic backgrounds and 414 

mutation load in cell lines(50,53). 415 

The PRISM/DepMap compound screen has also quantified genotype-specific treatment 416 

responses(54). We tested whether mutation of each tumor suppressor gene is associated with a 417 

better or worse response for each genotype-treatment pair (the Mann-Whitney U-test with FDR-418 

correction). The log viability measured by PRISM/DepMap compound screen and ScoreGSTR 419 

predicted by Tubaseq were significantly correlated (ρ = 0.34, P = 0.01). Among the 9 significant 420 
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genotype-treatment pairs predicted by Tuba-seq, 7 of them are in the same direction in the 421 

PRISM/DepMap compound screen dataset, although only three of these effects were significant 422 

in PRISM (Table S2). This is likely driven in part by their small sample size and the fact that in 423 

the PRISM/DepMap compound screen dataset, the results are correlative and ignore all co-424 

occurring mutations, while our analysis establishes a direct causal relationship. 425 

Patient-derived tumor xenograft models (PDX) can also be used to test for the association 426 

between genotype and drug response. Gao et al. conducted a very broad PDX study, generating a 427 

total of 4759 response curves from ~1000 PDXs treated with 62 treatments (Table S3)(55). We 428 

used two-way ANOVA to determine whether there are any significant genotype-treatment pairs 429 

in these PDX data where the therapies overlap with our Tuba-seq results. Overall, there was no 430 

significant correlation between our ScoreGSTR and these ANOVA results (r = 0.124, P = 0.623; 431 

ρ = 0.07, P = 0.792, Table S4). Given the large number of mutations per PDX (642 on average 432 

for the cancers used for comparison) and the small number of response curves measured per 433 

gene-drug pair (median number of treated PDXs that have the gene of interest mutated was 6, see 434 

Table S3), the lack of correlation is not surprising. This PDX study, despite its extremely large 435 

scope, failed to identify the positive control genotype-treatment pair of RB1-mutated tumors 436 

being resistant to CDK4/6 inhibitors. These PDX results also did not uncover that KEAP1 437 

inactivation leads to resistance to chemotherapy, which is an interaction that has been confirmed 438 

with clinical data (Fig. 4a)(44). 439 

DISCUSSION 440 

Here we described and validated a scalable and quantitative in vivo pharmacogenomic 441 

preclinical model, which has high power to identify genotype-treatment responses using modest-442 

size cohorts of mice. While the number of mice required is modest, the total number of assayed 443 
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tumors is large – on the order of thousands per mouse – providing the ability to assay a large 444 

number of tumor suppressors in the same experiment at a reasonable cost (Supplementary Fig. 445 

15a-c). Indeed, while genetically engineered mouse models are key preclinical models to study 446 

genotype-specific treatment responses, traditional approaches are neither rigorously quantitative 447 

nor scalable, requiring impractically large numbers of mice. For instance, we estimated that with 448 

ten mice per group, the sensitivity of our approach would be > 99% to detect a genotype-specific 449 

treatment resistance that results in tumor sizes that are 50% larger than control tumors. If we had 450 

used a more traditional approach of comparing four cohorts of mice (with and without a specific 451 

tumor-suppressor alteration and therapy-treated versus vehicle-treated), ~300 mice/group would 452 

be required to achieve the same sensitivity for just one tumor suppressor genotype 453 

(Supplementary Fig. 15a-c). To build the pharmacogenomic map presented in this study, we 454 

would have needed to breed, initiate tumors in, and treat ~10,000 mice instead of 58; thus, our 455 

system represents a >100-fold increase in throughput. Moreover, our power to detect effects is 456 

mostly limited by the number of mice per group and not by the number of tumors per mouse, 457 

allowing future iterations of this approach to query more genotypes per mouse. 458 

We used one sgRNA per gene for the screening, and one may be concerned with the 459 

efficiency and off-target effects of the sgRNA. However, these sgRNAs has been extensively 460 

validated by previous studies. The ruggedness of the pharmacogenomic landscape further 461 

suggests the efficiency of the sgRNAs, with seven out of the 11 sgRNAs showed some genotype-462 

specific treatment responses. Moreover, our pipeline is largely immune to off-target effects for 463 

sgRNAs, and such effects would not be expected to generate GSTRs (Supplementary Fig. 3 and 464 

Supplemental Methods and Discussion). Furthermore, neither differences in tumor number nor 465 

overall tumor burden across mice dramatically shift tumor suppressive effects, suggesting that 466 
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this methods is not dramatically influence by mouse-to-mouse variation (Supplementary Fig. 467 

16a-b)(29). 468 

Our method is not only scalable and quantitative, but also allows the introduction of 469 

specific alterations into each tumor and the study of marginal effects of individual tumor 470 

suppressor genes in isolation which is not possible using traditional cell line or PDX approaches. 471 

Moreover, the use of genetically engineered mouse models allows autochthonous tumors to 472 

develop in their natural immunocompetent environment. This provides the ability to study 473 

immunotherapies but also the ability to recapitulate aspects of chemotherapy and targeted 474 

therapy responses that are influence by adaptive immune responses. 475 

The key result of this study, which had been suspected but never directly demonstrated, is 476 

that tumor suppressor genotype has a substantial impact on responses to a range of distinct 477 

therapies. The fact that this was not previously demonstrated experimentally is primarily due to 478 

the lack of appropriate systems, which underscores the need for higher-throughput quantitative 479 

preclinical models(27). Indeed, while databases like TCGA and GENIE databases provide 480 

valuable information on the mutational spectra in tumors, these databases generally lack 481 

treatment histories and cannot be used to study pharmacogenomic interactions. Prior cell-line 482 

studies suggested that very few genotypes significantly impact drug responses (e.g., 0.24% of 483 

genotype-treatment pairs in GDSC), which we believe is largely due to the lack of statistical 484 

power. In contrast, we show that >20% of genotype-treatment pairs show interactions, 485 

suggesting a complex pharmacogenomic map of resistance and sensitivity of KRAS-driven lung 486 

adenocarcinoma. 487 

There are some potential caveats for our PGx-Tuba-seq approach. We can only introduce 488 

a limited number of mutations into each tumor, reducing our ability to recapitulate the high 489 
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tumor mutation burden and overall complexity of human tumors. While we can study the genetic 490 

interaction among up to three genes, is it possible that even higher order interactions could 491 

modify the pharmacogenomic landscape. Furthermore, the extent to which our results 492 

recapitulate reponses in patients remains unknown due to the lack of large-scale patient data sets.  493 

Thus, the interpretation of our results will benefit from further experimental, bioinformatic and 494 

clinical evidence.  495 

The complexity and rugged nature of this pharmacogenomic map has important 496 

implications for precision medicine. The complexity of human cancer genomics and the large 497 

number of potential therapies suggest that large-scale investigation of the pharmacogenomic 498 

maps in preclinical models will aid in patient selection. Our framework for in vivo functional 499 

genomic studies should easily allow larger number of genes and additional monotherapies and 500 

combination therapies to be tested. Application to other genomic sub-types of lung cancer and 501 

potentially to other cancer types should further increase our knowledge of the pharmacogenomic 502 

determinants of therapy responses(56). We anticipate that the use of this platform to quantify the 503 

effects of additional therapies across a greater diversity of cancer genotypes will provide a cause-504 

and-effect pharmacogenomic understanding from which novel biological hypotheses and 505 

precision treatment approaches will emerge.  506 
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 678 

Table 1. Treatments tested using the PGx-Tuba-seq platform. 679 

 680 

Type Treatment Dose Frequency Route of administration 

Monotherapy Palbociclib 100 mg/kg Daily Oral gavage 

Monotherapy Everolimus 10 mg/kg Daily Oral gavage 

Monotherapy Phenformin 100 mg/kg Daily Oral gavage 

Monotherapy Paclitaxel 20 mg/kg Every other day Intraperitoneal injection 

Monotherapy Trametinib 0.3 mg/kg Daily Oral gavage 

Combination Paclitaxel 

+ Trametinib 

 

20 mg/kg 

0.3 mg/kg 

Every other day 

Daily 

Intraperitoneal injection 

Oral gavage 

Combination Carboplatin 

+ Paclitaxel 

 

50 mg/kg 

20 mg/kg 

 

Every five days 

Every other day 

 

Intraperitoneal injection 

Intraperitoneal injection 

 

Combination Carboplatin 

+ Paclitaxel 

+ Trametinib 

50 mg/kg 

20 mg/kg 

0.3 mg/kg 

Every five days 

Every other day 

Daily 

Intraperitoneal injection 

Intraperitoneal injection 

Oral gavage 

 681 
 682 
  683 
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 684 

Table 2. Overview of our optimized Tuba-seq analysis pipeline for calling sgID-BCs from 685 

sequencing data and determining the number of neoplastic cells in each tumor 686 

 687 

 688 

 689 
 690 

  691 

Paired-end sequencing of the sgID-BC 

amplicon using Hi-Seq2500 

Extract the sgID-BC region 

keeping only those reads that match 

perfectly in forward and reverse direction 

Keep barcodes with 2 or more reads 

Remove all “tumors” with barcodes 

that are within 2 nucleotides of any larger 

tumor in that mouse with the same sgID 

Determine the # of reads with each barcode and 

calculate the absolute # of neoplastic cells 

by comparing to the # of reads from Spike-in controls 
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 692 

Table 3. Comparison of our current pipeline with our previous Tuba-seq pipeline 693 

 694 

Module Previous  

(Rogers et al., 

2017) 

Current Purpose 

Viral 

production 

Pooled Each viral vector was prepared 

separately 

Eliminate Lentiviral template 

switching 

Library 

preparation 

Taq polymerase Q5 polymerase Reduce PCR errors 

Library 

preparation 

Single indexing Dual unique indexing Eliminate the impact of index 

hopping during sequencing on 

tumor calling 

Sequencing Single-end Paired-end Reduce “spurious tumors” 

created by sequencing errors 

Read 

processing and 

tumor calling 

DADA2 

clustering 

Stringent filtering on reads 

Remove spurious tumors 

recursively based on  

hamming distance 

Eliminate “spurious tumors” 

created by PCR and  

sequencing errors 

Read 

processing and 

tumor calling 

No restriction on 

BC length 

Require exact length match Eliminate “spurious tumors” 

created by PCR and  

sequencing errors 

  695 
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FIGURE LEGENDS 696 

 697 

Figure 1. Optimization of tumor-barcoding coupled with high-throughput barcode 698 

sequencing (Tuba-seq) for the analysis of genotype-specific therapy responses (GSTRs) in 699 

vivo.  700 

a. Overview of Tuba-seq pipeline to uncover GSTRs. The Lenti-TS
Pool

/Cre viral pool contains 701 

barcoded vectors with sgRNAs targeting 11 putative tumor suppressors that are frequently 702 

mutated in human lung adenocarcinoma. Tumors are initiated in either Kras
LSL-G12D/+

;R26
LSL-Tom

 703 

(KT) or Kras
LSL-G12D/+

;R26
LSL-Tom

;H11
LSL-Cas9

 (KT;H11
LSL-Cas9

) mice. Following tumor 704 

development, mice are treated with therapies, and barcode sequencing libraries are prepared from 705 

each tumor-bearing lung.  Multiple technical advances in the pipeline involve viral production, 706 

library preparation, sequencing and analysis pipeline have been made, boosting the accuracy of 707 

our pipeline to enable many further applications. 708 

b. Stringent filtering effectively eliminated spurious tumors. Analysis of the barcodes associated 709 

with the sgID specific for the Spike-in control cells (3 cell lines with a defined sgID-BC added at 710 

5x10
5
 cell/sample as the benchmark) enables identification of recurrent barcode reads generated 711 

from sequencing and other errors (Spurious tumors). Data is from a typical lane of 22 712 

multiplexed Tuba-seq libraries from KT;H11
LSL-Cas9

 mice with Lenti-TS
Pool

/Cre initiated tumors.  713 

c. The relative size of tumors of each genotype in KT;H11
LSL-Cas9 mice 18 weeks after tumor 714 

initiation with Lenti-sgTS
Pool

/Cre. The relative sizes of tumors at the indicated percentiles were 715 

calculated from the tumor size distribution of all tumors in 5 mice. Error bars show 95% 716 

confidence intervals. 717 

 718 

Figure 2. Tuba-seq is a powerful tool to quantify genotype-specific therapeutic responses 719 

(GSTR). 720 

a. Data analysis pipeline to identify GSTR by comparing the relative tumor number (ScoreRTN) 721 

and relative geometric mean (ScoreRGM) between tumors containing a tumor suppressor 722 

targeting sgRNA and Inert tumors in the untreated and treated mice. 723 
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b. A receiver operating characteristic curve showing the sensitivity and specificity of ScoreRTN 724 

estimated from simulations of preassigned drug effect (S=0.5) and GSTR (various G) using 8 725 

untreated mice and 5 treated mice. There is no genotype-specific response when G=0. G of -20% 726 

means the tumors with the sgRNA were reduced by an additional 20% in size.  727 

c. A receiver operating characteristic curve showing the sensitivity and specificity of ScoreRGM 728 

estimated from the same simulation as in b. 729 

 730 

Figure 3. Tuba-seq quantifies genotype-specific therapeutic responses (GSTR) to multiple 731 

therapies. 732 

a. Timeline of the experiment. Tumors were initiated in KT;H11
LSL-Cas9

 mice with the barcoded 733 

Lenti-sgTS
Pool

/Cre. Three weeks of treatment was initiated after 15 weeks of tumor growth. The 734 

number of mice used for each treatment arm is shown. 735 

b-d. The estimated genotype-specific treatment response(Ĝ) calculated from the inverse variance 736 

weighted average of ScoreRTN and ScoreRGM for the pharmacogenomic mapping experiment 737 

(b), negative control experiment in KT mice (c), and palbociclib repeat experiment (d). Stars 738 

represent significant effects. 739 

 740 

Figure 4. Comparison of Tuba-seq identified GSTRs with cell line and clinical data. 741 

a. Kaplan-Meier curve (with 95% confidence interval in shading) of time-to-next-treatment 742 

(months) for patients with or without KEAP1 mutations with metastatic oncogenic KRAS-driven 743 

lung adenocarcinoma to platinum-containing chemotherapy. The number of patients in each 744 

group is shown. P-values were calculated from the Mantel-Haenszel test.  745 

b. Responses of patients with metastatic oncogenic KRAS-driven lung adenocarcinoma to 746 

platinum-containing chemotherapy are consistent with KEAP1 inactivation leading to resistance. 747 

KEAP1 mutations are significantly correlated with a higher hazard ratio for time-to-next-748 

treatment.  749 
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c. Correlation between GSTR estimated in our study and that from the Genomics of Drug 750 

Sensitivity in Cancer (GDSC) database based on cancer cell line studies. The significant GSTRs 751 

in our study are highlighted in red. 752 

d. Comparison of our identified GSTRs with data from the GDSC database. Stars represent 753 

significant cases. 754 
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