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Cancer progression is an example of a rapid adaptive process where
evolving new traits is essential for survival and requires a high mu-
tation rate. Precancerous cells acquire a few key mutations that
drive rapid population growth and carcinogenesis. Cancer genomics
demonstrates that these few ‘driver’ mutations occur alongside thou-
sands of random ‘passenger’ mutations—a natural consequence of
cancer’s elevated mutation rate. Some passengers can be deleteri-
ous to cancer cells, yet have been largely ignored in cancer research.
In population genetics, however, the accumulation of mildly deleteri-
ous mutations has been shown to cause population meltdown. Here
we develop a stochastic population model where beneficial drivers
engage in a tug-of-war with frequent mildly deleterious passengers.
These passengers present a barrier to cancer progression that is de-
scribed by a critical population size, below which most lesions fail
to progress, and a critical mutation rate, above which cancers melt-
down. We find support for the model in cancer age-incidence and
cancer genomics data that also allow us to estimate the fitness ad-
vantage of drivers and fitness costs of passengers. We identify two
regimes of adaptive evolutionary dynamics and use these regimes to
rationalize successes and failures of different treatment strategies.
We find that a tumor’s load of deleterious passengers can explain
previously paradoxical treatment outcomes and suggest that it could
potentially serve as a biomarker of response to mutagenic therapies.
Collective deleterious effect of passengers is currently an unexploited
therapeutic target. We discuss how their effects might be exacer-
bated by both current and future therapies.

cancer | evolution | genomics | mathematical modeling

Significance Statement
During adaptation, populations start in hostile conditions and
needs to evolve new traits to survive. A population of cancer
cells within a body is an example of such a population: can-
cer needs to evolve new traits to survive and progress. These
new traits are acquired by mutations in a few specific “driver”
genes. However, many other genes are mutated and randomly
altered during this process, potentially damaging cancer cells.
The role that these damaging “passenger” mutations play in
cancer, and other adaptive processes, is unknown. Here we
show that driver mutations engage in a tug-of-war with dam-
aging passengers. This tug-of-war explains many phenomena
in oncology, suggesting how to target existing therapies and
develop new therapies to exploit damaging passengers.

Introduction
While many populations evolve new traits via a gradual ac-
cumulation of changes, some adapt very rapidly. Examples
include viral adaptation during infection (1); the emergence
of antibiotic resistance (2); artificial selection in biotechnol-
ogy (3); and cancer (4). Rapid adaptation is characterize by
three key features: (i) the availability of strongly advantageous
traits accessible by a few mutations, (ii) an elevated mutation
rate (5, 6), and (iii) a dynamic population size (7). Tradi-
tional theories of gradual adaptation are not applicable under
these conditions, and new approaches are needed to address
pressing problems in medicine and biotechnology.

Cancer progression is an example of a rapidly adapting pop-
ulation: cancers develop as many as ten new traits (8), often
have a high mutation rate (8-10), and a population size that is
rapidly changing over time. This process is driven by a hand-
ful of mutations and chromosomal abnormalities in cancer-
related genes (oncogenes and tumor suppressors), collectively
called drivers. From an evolutionary point of view, drivers are
mutations that are beneficial to cancer cells because their phe-
notypes increase the cell proliferation rate or eliminate brakes
on proliferation (8). Drivers, however, arise alongside thou-
sands of other mutations and alterations dispersed through
the genome that have no immediate beneficial effect, collec-
tively called passengers.
Passengers have been previously assumed to be neutral and

largely ignored in cancer research, yet growing evidence sug-
gests that they may sometimes be deleterious to cancer cells
and, thus, play an important role in both neoplastic progres-
sion and clinical outcomes. In an earlier study, we showed that
deleterious passengers can readily accumulate during tumor
progression and found that many passengers present in cancer
genomes exhibit signatures of damaging mutations (11). Ad-
ditionally, chromosomal gains and losses that are pervasive in
cancer can be passengers, and have been shown to be highly
damaging to cancer cells (12). Lastly, cancers with high levels
of chromosomal alterations exhibit better clinical outcomes in
breast, ovarian, gastric, and non-small cell lung cancer (13).
Passenger mutations and chromosomal abnormalities can be
deleterious via a variety of mechanisms: direct loss-of-function
(14), proteotoxic cytotoxicity from protein disbalance and ag-
gregation (15), or by inciting an immune response (16).
While the role of deleterious mutations in cancer is largely

unknown, their effects on natural populations has been exten-
sively studied in genetics (5, 17-19). The accumulations of
deleterious mutations can cause the extinction of a popula-
tion via processes known as Muller’s ratchet and mutational
meltdown (17, 20, 21) It was recently proposed that inevitable
accumulation of deleterious mutations in natural populations
should be offset by new beneficial mutations, leading to long-
term population stability (19). Here we consider a rapid adap-
tation of a population with a variable size and subject of a high
mutation rate. A rapidly adapting population faces a double
bind: it must quickly acquire, often exceeding rare, adaptive
mutations and yet avoid mutational meltdown. As a result,
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adaptive processes frequently fail. Indeed, less than 0.1% of
species on earth have adapted fast enough to avoid extinction
(22) and, similarly, only about 0.1% of precancerous lesions
ever advance to cancer (23). To control cancer or pathogens,
we should understand the constraints that evolution imposes
on their rapid adaptation.
Here we investigate how asexual populations such as tumors

rapidly evolve new traits while avoiding mutational meltdown.
Unlike classical theories of gradual adaptation, the evolution-
ary model we develop has three key features: (i) rare, strongly
advantageous driver mutations, (ii) a high mutation rate that
makes moderately deleterious passengers relevant, and (iii) a
population size that varies with the fitness of individual cells.
We found that a tug-of-war between beneficial drivers and
deleterious passengers creates two major regimes of popula-
tion dynamics: an adaptive regime, where the probability of
adaptation (cancer) is high; and a non-adaptive regime, where
adaptation (cancer) is exceedingly rare.
Adaptive and non-adaptive regimes are separated by a crit-

ical population size or barrier to cancer progression that most
lesions fail to overcome, and a critical mutation rate that leads
to mutational meltdown. We found strong evidence of these
phenomena in age-incidence curves and recent cancer genomics
data. Agreement of the model with these data allows us to es-
timate the selective advantages of drivers as 10-50%, a range
consistent with recent direct experimental measurements (24).
Genomic data also show that deleterious passengers are ap-
proximately 100 times weaker. Our model offers a new inter-
pretation of cancer treatment strategies and explains a previ-
ously paradoxical relationship between cancer mutation rates
and therapeutic outcomes. Most importantly, it suggests that
deleterious passengers offer a new, unexploited avenue of can-
cer therapy.

Results
Model.We consider a dynamic population of cells that can
divide, mutate (in a general sense, i.e. including alterations,
epigenetic changes, etc), and die stochastically. Mutations
occur during cell divisions with a per-locus rate µ. The num-
ber of driver loci in the genome, i.e. a driver target size,
is Td, while the target size for deleterious passengers is Tp.
Hence, the genome-wide driver and passenger mutation rates
are µd = µTd and µp = µTp respectively. A driver increases an
individual’s growth rate by sd ∼ 0.1, while a new passenger de-
creases the growth rate by sp ∼ 10−4−10−1. Here we only con-
sider fixed values of sd and sp because previous work showed
that drivers and passengers sampled from various fitness distri-
butions (exponential, normal, and Gamma) exhibit essentially
the same dynamics (11). The net effect of multiple mutations
on cell fitness w is given by w = (1 + sd)nd (1 + sp)np , where
nd and np are the total number of drivers and passengers in a
cell.
The birth and death rates of a cell in our model depend

not only on fitness, but also on the population size N via a
Gompertzian growth function often used to describe cancer-
ous populations (25) (see SI for details). At large N , deaths
exceed births and tumors must adapt (or innovate) via new
drivers to progress to larger population sizes. Thus, popula-
tions in our model expand and shrink in two ways: on a short
time-scale due to stochastic cell divisions and deaths, and on a
long time-scale due to the accumulation of advantageous and
deleterious mutations. Previous models of advantageous and
deleterious mutations have not considered a varying popula-
tion size (26, 27).

In cancer and other adapting populations the target size
for advantageous mutations (drivers) is much smaller than
the target size for deleterious mutations (Td � Tp). If
driver loci include a few specific sites (∼ 10 per gene) in all
cancer-associated genes (approximately 100, (28)), then collec-
tively drivers will constitute less than one one-millionth of the
genome. Conversely, as much as 10% of the human genome is
well-conserved and likely deleterious when mutated (29, 30).
In natural populations, Tp should still remain much greater
than Td simply because natural selection optimizes genomes
to their environment, implying that most changes will be neu-
tral or damaging. Indeed, most protein coding mutations and
alterations were deleterious or neutral when investigated in fly
(31), yeast (32), and bacterial genomes (33). We consider only
moderately deleterious loci here (sp ≈ 10−4 − 10−1)—which
account for most nonsynonymous mutations (34, 35). Delete-
rious mutations outside of this range either do not fixate or
negligibly alter progression (11). Hence, we used a conser-
vative size of Tp ≈ 105 − 107 loci to account for passengers
with fitness effects outside of this range that we are neglecting
(see SI and Table S1 for details of parameters estimation).
This quantity is still much greater than Td. Finally, we ex-
plored a variety of driver fitness advantages, as estimates in
the literature ranged from 0.0001 (36) to 1 (24).

A critical population size.Figure 1A shows the dynamics
N(t) of individual populations starting at different initial sizes
N0, which correspond to different potential hyperplasia sizes
(we begin trajectories immediately after a stem cell acquires its
first driver, see SI for a discussion of dynamics before this time
point). Populations exhibit two ultimate outcomes: growth to
macroscopic size (i.e. cancer progression), or extinction. The
prevalence of either outcome is determined by a critical pop-
ulation size N∗, about which larger populations (N > N∗)
generally commit to rapid growth and smaller populations
(N < N∗) generally commit to extinction.
To understand the cause of this critical population size N∗,

we looked at the short-term dynamics of populations. All
trajectories show a reversed saw-toothed pattern (Fig. 1B),
which result from a tug-of-war between drivers and passengers
(11). When a new driver arises and takes over the population,
the population size increases to a new stationary value. In
between these rare driver events, the population size gradu-
ally decreases due to the accumulation of deleterious passen-
gers. The relative rate of these competing processes deter-
mines whether a population commits to rapid growth or goes
extinct.
We can identify the location of N∗ by considering the aver-

age change in population size over time (< dN/dt >), which
is simply the average population growth due to driver accu-
mulation (vd) minus the population decline due to passenger
accumulation (vp). Fixation of a new driver causes an im-
mediate jump in population size ∆N = Nsd. These jumps
occur randomly at a nearly constant rate f = µdNsd, given
by the driver occurrence rate µdN , multiplied by a driver’s
fixation probability sd/(1 + sd) ≈ sd. Hence, the velocity due
to drivers is vd = f∆N = µdN

2s2
d. Similarly, passengers’ ve-

locity (vp = µpNsp) is a product of their rate of occurrence
(µpN); their effect on population size (Nsp); and their prob-
ability of fixation (∼ 1/N , a more accurate measure of this
probability is used below and provided in the SI). Thus, we
obtain: 〈

dN

dt

〉
= µpspN

(
N

N∗
− 1
)

[1]

N∗ = Tpsp

Tds2
d

[2]
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where N∗ is the critical population size.
Because the population velocity is negative below N∗ and

positive above N∗ there is an effective barrier for cancer (Fig.
1C): smaller populations tend to shrink, while larger popula-
tions tend to expand. Simulations support our conclusion that
the probability of cancer increases with N0 and sharply tran-
sitions at N∗ (Fig. 1D). Indeed, drastically different proba-
bility curves collapse onto a single curve once N0 is rescaled
by N∗ (computed from equation 2). Since N∗ captures only
the average, or mean-field, dynamics, it misses the variability
of outcomes in rapidly adapting populations. Figure 1E il-
lustrates that the variability of outcomes depends upon the
strength of drivers sd. Higher values of sd lead to larger
stochastic jumps, which leads to larger deviations from mean
behavior and more gradual changes in the probability of can-
cer across N0. Thus, we formulated and analytically solved a
stochastic generalization of equation 1 that incorporates this
variability (SI). Our solution provides an excellent fit to simu-
lations (Fig. 1E) and indicates that N∗ and sd fully describe
population dynamics (SI).
We can understand how N∗ and sd control cancer progres-

sion using a simple random-walk analogy. The population
size experiences random jumps, resulting from driver fixation
events, which are described by equation 1. These random
jumps and declines are effectively a random walk in a one-
dimensional effective potential (Ueff =

∫
(dN/dt ) dN), Fig.

1C and SI) with stochastic jumps of frequency f and size ∆N .
Similar to chemical reactions activated by thermal energy, can-
cer progression is a rare event triggered by a quick succession
of driver fixations. Below, we show that human tissues operate
in a regime where progression is rare and successful lesions are
the rare lesions that happen to acquire drivers faster than av-
erage. We found that population dynamics depend entirely on
two dimensionless parameters: a deterministic mean velocity,
dependent only upon N/N∗, and a stochastic step-size that is
approximately proportional to sd. By reducing the complexity
of our evolutionary system to two parameters, we were next
able to infer their values for real cancers without over-fitting.

Model validation using cancer incidence and genomic data.
Our model of cancer progression predicts the presence of an ef-
fective barrier to cancer where small lesions are very unlikely
to ever progress to cancer. It also predicts a specific distri-
bution in the number of passenger mutations and a specific
relationship between drivers and passengers in individual can-
cer samples. We looked for evidences of these phenomena in
age-incidence data (37) and cancer genomics data (28, 38-40).
These comparisons also allowed us to estimate some critical
parameters of the model: N0, sd, and sp.

Figure 2A presents the incidence rate of breast cancer ver-
sus age (37) alongside the predictions from a classic driver-
only model (SI) and our model. The incidence rate was cal-
culated by considering a process where precancerous lesions
arise with a constant rate r beginning at birth. These le-
sions then progress to cancer in time τ with a probability
P (τ) that we determined from simulations (Fig. S1). By
convoluting this distribution P (τ) with the lesion initiation
rate r, we can predict the age-incidence rate I(t). Because
many lesions go extinct in our model and never progress
to cancer, the predicted incidence rate saturates at old-age:

Imax = r
∞∫
0
P (τ) dτ =rP∞, where P∞ is the probability that

a lesion will ever progresses to cancer, determined above.
Both the observed population incidence rates and our

driver-passenger model saturate with age. This is a direct
result of the probability of progression from a lesion to cancer

being low. We estimate a lower bound for the rate of lesion
formation r in breast cancer of at least 10 lesions per year that
can be arrived at through two separate considerations: first,
by considering the quantity of breast epithelial stem cells and
the rate at which they can mutate into lesions (SI), and sec-
ond, by considering the number of lesions observed within the
breast tissue of normal cadavers (23). By comparing this limit
(∼ 10 lesions · year−1) to the maximum observed breast can-
cer incidence rate Imax ≈ 10−2 cancers · year−1, we find that
P∞ ≈ 10−3, or only about 1 in 1,000 lesions ever progress.
This finding is consistent with a number of clinical studies
that have observed that very few lesions ever progress to can-
cer, while many more regress to undetectable size (41, 42)—
another property seen in our model. Thus, good agreement
between age-incidence data and our model is obtained when
sd ≈ 0.1 − 0.2 and N0/N∗ is chosen such that P∞ = 10−3.
This suggests that cancer begins at a population size far below
N∗, where drivers are most often overpowered by passengers.
Indeed, 21 of the 25 most prevalent cancers plateau at old-age
suggesting that progression is inefficient in most tumor types
(Fig. S1). In a driver-only model (see SI for details), every
lesion progresses to cancer after sufficient time (i.e. P∞ = 1),
therefore a plateau in incidence rate can only result from a
very low lesion formation rate (0.01 per year), which is incon-
sistent with abundant pathology data (23, 43).
Recent cancer genomics data offer a new opportunity to

validate our model. Specifically, we looked at Somatic Non-
synonymous Mutations (SNMs) and Somatic Copy-Number
Alterations (SCNAs) derived from over 700 individual cancer-
normal sample pairs obtain from the breast (38), colon (28),
lung (40), and skin (39) (Table S2). We found similar re-
sults when analyzing SNMs and SCNAs both separately (Fig.
S2, Table S3) or in aggregation (Fig. 2BC). Figure 2B
shows a wide and asymmetric distribution of the total num-
ber of mutations, which is consistent with our model under
realistic parameters. A driver-only model yields a narrower
and more symmetric distribution that is inconsistent with the
data (Fig. 2B). The driver-only model can fit the observed
distribution only if it assumes that just 1-2 drivers are needed
for cancer (Fig. S3, Table S4)—a value inconsistent with
both the extent of recurrent mutations seen in cancer (10) and
known biology. This large variance in mutation totals further
supports our model and suggests that driver mutations and
alterations have a large effect size: sd ≈ 0.4. Our estimate
of sd ≈ 0.1 − 0.4 obtained from age-incidence and mutation
histograms is in excellent agreement with experimentally mea-
sured changes in the growth rate of mouse intestinal stem cells
upon induction of p53, APC or k-RAS mutations where mea-
sured values ranged from of 0.16 to 0.58 (24).
We then used cancer genomics data to compare the num-

ber of drivers and passengers observed in individual cancer
samples to our model’s predicted relationship. In our model,
additional passengers must be counterbalanced by additional
drivers for the population to succeed. If a lesion lingers
around N∗ for a long time, then it must have acquired both
many passengers and many counterbalancing drivers; while
lesions that quickly progress through the barrier at N∗ ac-
quire fewer of each. As a result, we expect a positive linear
relationship between the number of drivers and passengers:
nd ·sd−np ·sp = constant; this result follows directly from the
definition of fitness in our model (SI). Our predicted positive
linear relationship between drivers and passengers is indeed
observed in all tumor types that we studied (Fig. 2C, Ta-
ble S3, p < 0.08 − 10−6). The slope of this regression line
is predicted to be sp/sd, which ranged from 1/21 to 1/193
(Table S3) for the various subtypes. While there is consid-
erable variation and large margins of error in these numbers,
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these slopes (sp/sd ≈ 5 · (10−2 − 10−3)) correspond to an sp

of 5 · (10−3 − 10−4) when sd = 0.1. These rough values are
similar to germ-line SNMs in humans of European descent,
where 64% of all mutations exhibit an sp between 10−5 and
10−2 (35).
We considered and refuted several alternative explanations

for the observed positive linear relationship between drivers
and passengers. First, that the strength of SCNAs may differ
from SNMs. Hence, we investigated each alteration-type sep-
arately and found positive linear relationships in both cases
(Fig. S2, Table S3). Second, that the number of driver al-
terations might be explained by variation in the tumor stage,
or the rate and/or mechanism of mutagenesis. In Table S3
we show that these factors cannot suppress the correlation
between drivers and passengers. Lastly, we considered and
refuted the possibility that this relationship between drivers
and passengers is non-linear (Fig. 2C insert). Because the
data disagrees with all of these alternate hypotheses, we be-
lieve that it supports our conclusion that cancer progression
is a tug-of-war between drivers and passengers.

A critical mutation rate. We next used simulations to investi-
gate the probability of cancer over a broad range of evolution-
ary parameters (Fig. S4) and found that there is a critical
mutation rate above which the probability of cancer is ex-
ceedingly low (Fig. 3A). To explain this phenomenon and to
find the parameters that determine this critical mutation rate
µ∗, we modified our analytical framework to consider selec-
tion against passengers and the effects of unfixed passengers
on the accumulation of drivers. The modified framework, de-
scribed in the SI, explains observed dynamics well (Fig. 3AB,
S4). Previous theoretical work has shown that the number of
unfixed passengers per cell is Poisson distributed with mean
µp/sp [first described in (44)]. This result assumes an approxi-
mate balance between the mutation rate of passengers and the
selection against them, otherwise known as mutation-selection
balance. The average fitness reduction of a cell due to this mu-
tational load (i.e. the reduction in fitness relative to the fittest
cells in the population) is µp. A new driver arises in one of
these cells at random and must carry the load of passengers
residing in its cell along with it to fixation (18) (Fig. 3C);
this process is often referred to as hitchhiking, so we describe
these passengers as ‘hitchhikers’. If the reduction in fitness
due to the load of passengers (µp = µTp) exceeds the benefit
of a new driver (sd), then the driver will not fixate (Fig. 3C).
Hence, cancer is extremely rare when µp > sd. This suggests
a critical mutation rate:

µ∗ = sd/Tp [3]

The critical mutation rate suggests a new mode by which mu-
tational meltdown operates. Prior models of mutational melt-
down consider deleterious mutations in isolation (17), whereas
our model points at the ability of deleterious mutations to in-
hibit the accumulation of advantageous mutations as a mech-
anism of meltdown. While it has been previously shown that
deleterious mutations interfere with the fixation of beneficial
alleles (18, 26, 45), this phenomenon has never been studied
in the context of population survival. We discuss some im-
portant implications of this critical mutation rate for cancer
treatment below.
We found support for the critical mutation rate in both can-

cer age-incidence and cancer genomics data. If we constraint
cancer progression to develop within the typical timeframe for
cancer progression (i.e. when we begin to see a plateau in in-
cidence: ∼ 60 years or 10,000 generations), the probability of
cancer exhibits an optimum across mutation rates (Fig. 3D).

Above µ∗ population meltdown is very common, while at very
low mutation rates progression is too slow. The optimal muta-
tion rate (10−9− 10−8mutations · nucleotide−1 · generation−1)
is similar to mutation rates observed in cancer cell lines with
a mutator phenotype (9) and the inferred mutation rate de-
rived from the median number of mutations observed in a
pan-cancer study of >3,000 tumors (10). Because µ∗ depends
only on sd and Tp, and is independent of other variables, we
believe the maximal mutation rate should be the same across
tumor subtypes (SI, Fig. S4). Indeed, a maximum of ap-
proximately 100 somatic mutations per Mb (99.4th percentile)
was observed in the pan-cancer study mentioned above, which
corresponds to our theoretical estimate (if we assume that
the most mutagenic cancers still require 1,000 generations to
progress).

Two regimes of dynamics. Taken together, our results demon-
strate that the tug-of-war between advantageous drivers and
deleterious passengers creates two major regimes of popula-
tion dynamics: an adaptive regime where the probability of
progression (cancer) is high (∼ 100 %) and a non-adaptive
regime where cancer progression is exceedingly rare (Fig. 3,
S4). Evolving populations that fail to adapt and go extinct
may do so because they reside in a non-adaptive region of
the phase space. Similarly, normal tissues that avoid cancers
may present a tumor microenvironment that is in this non-
adaptive regime. By keeping N∗ sufficiently high, a tissue or
clinician could keep cancerous populations outside of the adap-
tive regime. This critical population size N∗ = Tpsp/(Tds

2
d)

depends on the evolutionary parameters of the system. For
example, if sp were increased by tuning the response of the
immune system to mutation-harboring cells, or if Td were de-
creased via a driver-targeted therapy, adaptation would be-
come less likely. Below we demonstrate that a successful treat-
ment must push a cancer back to the non-adaptive regime.

The adaptive barrier and critical mutation rate explain cancer
treatment outcomes. We simulated cancer growths and treat-
ments and then monitored the long-term dynamics of these
populations. Most treatments used today attempt to reduce
tumor size, e.g. by specifically inhibiting key drivers (46) or by
simply killing rapidly dividing cells (chemotherapy and radia-
tion). Chemotherapy and radiation also elevate the mutation
rate, thus affecting evolutionary dynamics. Previous work on
the evolution of resistance to therapy has not considered the
barriers to adaptation that we observe, so we re-investigated
evolutionary outcomes from standard therapies and identified
new potential ways to treat cancer. While real cancers have a
varied evolutionary history, our analytical formalism predicts
that cancer’s future dynamics depend only on their current
state, not their history (i.e. cancer dynamics are approxi-
mately path-independent, Fig. S5). We show below that
this assumption can accurately predict outcomes in simula-
tions and the clinic.
In Figure 4, we present the evolutionary paths of cancer—

from hyperplasia, to cancer, to treatment, and relapse or
remission—on top of the phase diagrams described earlier.
Our analysis demonstrates that a treatment is successful if it
pushes a cancer into the non-adaptive regime of evolutionary
dynamics where the probability of adaptation is low. Con-
versely, therapies fail, and populations re-adapt and remiss,
when the therapy does not move cancer far enough to place it
in the non-adaptive regime.
Our model suggests that chemotherapies succeed, in part,

because they move cancers across the mutational threshold µ∗.
Beyond this threshold, the probability that a driver is strong
enough to overpower a load of passengers becomes small (see
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above, Fig. 2C), making it hard for cancer to readapt. In-
creasing the mutation rate has little effect on the critical pop-
ulation size N∗ (see above).
Thus, our model suggest that cancers with a very high load

of mutations/alterations are close to the critical mutation rate
and should be more susceptible to mutagenic treatments, such
as chemotherapy. Several recent studies (13, 47) have noticed
that patients survive breast and ovarian cancer most often
when their tumors exhibited exceptional high levels of chro-
mosomal alterations. This phenomenon was robust within and
between subtypes of breast cancer (47). This finding is para-
doxical for all previous models of cancer, where a greater muta-
tion rate always accelerates cancer evolution and adaptation;
yet is fully consistent with our model (Fig. 4B).
Treatments exploiting the mutational load of cancers (i.e.

their accumulated passengers) remain largely unexplored. We
show that increasing the deleterious effect of passengers sp

causes tumors to enter remission. Increasing sp is doubly ef-
fective because it exacerbates the deleteriousness of accumu-
lated passengers and also slows down future adaptation. When
we simulate such treatment by a 3-5 fold increase of sp (Fig.
4C), we observe an immediate decline in the population size
followed by a low probability of replace due to an increased
N∗. The phase diagram shows that a mild increase in sp is
sufficient to push a population into an extinction regime and
thus induce remission. Below we discuss possible treatment
strategies that would increase sp.
Given the large number of treatment options, finding ther-

apies that work synergistically is a very important problem in
cancer research (reviewed in (48)). While synergism is often
discussed in the context of pharmacology, our phase diagrams
identify evolutionarily synergistic treatments. We found that
remission was most likely to occur when the mutation rate and
the fitness cost of passengers were increased simultaneously,
more so than would be expected from simply adding together
the effects of the individual therapies (Fig. S6). Hence, com-
binations of mutagenic chemotherapy along with treatments
that elevate the cost of a mutational load may be most effec-
tive. According to our model, these therapies should also be
compatible and complementary to driver-targeted therapies.

Discussion
We present an evolutionary model of rapid adaptation that in-
corporates rare, strongly advantageous driver mutations and
frequent, mildly deleterious passenger mutations. In this pro-
cess, a population can either succeed and adapt, or fail and go
extinct. We found theoretically, and confirmed by simulations,
two regimes of dynamics: one where a population almost al-
ways adapts, and another where it almost never adapts. Com-
plex stochastic dynamics, which emerge due to a tug-of-war
between drivers and passengers, can be faithfully described
as diffusion over a potential barrier that separates these two
regimes. The potential barrier is located at a critical popu-
lation size that a population must overcome to adapt. We
also found a critical mutation rate, above which populations
quickly meltdown. This general framework for adaptive asex-
ual populations appears to be perfectly suited to characterize
the dynamics of cancer progression and responses to therapy.
Progression to cancer is an adaptive process, driven by a few

mutations in oncogenes and tumor suppressors. During this
process, however, cells acquire tens of thousands of random
mutations many of which may be deleterious to cancer cells.
While strongly deleterious passenger mutations are weeded out
by selection, mildly deleterious can fixate and even accumu-
late in a cancer by hitchhiking on drivers, as we have shown
earlier (11). Passengers may be deleterious by inducing loss-of-

function in critical proteins (14), gain-of-function toxicity via
proteotoxic/misfolding stress (15, 49), or by triggering an im-
mune response by a mutated epitope (16, 50). While we looked
at passengers in cancer exomes and in SCNAs, passengers may
also constitute epigenetic modifications, or karyotypic imbal-
ances (15). Hence the number of deleterious passengers may
be more than currently observed by genome-wide assays.
Our framework suggests that most normal tissues reside in a

regime where cancer progression is exceedingly rare; i.e. most
lesions fail to grow above the critical population size and, thus,
fail to overcome the adaptive barrier. Clinical cancers, on the
contrary, reside above the adaptive barrier in a rapidly adapt-
ing state. Therapies must push a cancer below this adaptive
barrier to succeed. In our framework, this entails moving the
population belowN∗ or increasing the mutation rate above µ∗.
The availability of a broad range of data for cancer allowed us
to thoroughly test our framework’s applicability.
We tested out model and estimated its parameters using

cancer age-incidence curves, cancer exome sequences from al-
most 1,000 tumors in four cancer subtypes, and data on clinical
outcomes. Age-incidence curves support the notion that the
vast majority of lesions fail to progress and allow us to estimate
the fitness benefit of a driver as sd ∼ 0.1−0.4. Genomics data
suggests that passengers are indeed deleterious and that their
deleterious effect is approximately one hundred times weaker
than driver’s beneficial effect. Moreover, the fitness benefit of
a driver estimated from genomic data is roughly sd ∼ 0.4. Our
range of values are consistent with recently measured 16-58%
increases in the mouse intestinal stem cell proliferation rate
upon mutations in APC, k-RAS or p53 (24). Taken together
these data support the notion of a tug-of-war between rare
and large-effect drivers and frequent, but mildly deleterious
passengers sp ∼ 5 · (10−4 − 10−3), which nevertheless have a
large collective effect.
Results of our analysis have direct clinical implications.

Available clinical data (13, 47, 51) show that cancers with
a higher load of chromosomal alterations, i.e. close to µ∗,
respond better to treatments. Our study suggests two poten-
tially synergistic therapeutic strategies: to increase the muta-
tion rate above µ∗, and/or to increase the deleterious effect
of accumulated passengers. An increase in the fitness cost of
passengers would not only magnify the effects of an already ac-
cumulated mutational load, but also reduce future adaptation.
This may be accomplished by (i) targeting unfolding protein
response (UPR) pathways and/or the proteasome (15), (ii)
hyperthermia that may further destabilize mutated proteins
or clog UPR pathways (52), or (iii) by eliciting an immune
response (16). Intriguingly, all these strategies are in clinical
trials, yet they are often believed to work for reasons other
than by exacerbating passengers’ deleterious effects. In con-
trast, we predict that these therapies will be most effective
in cancers with more passengers and an elevated mutation
rate. Thus, characterizing the load of mutations/alterations
in tumors may offer a new biomarker for predicting treat-
ment outcomes and identify the best candidates for mutational
chemotherapies.
While this study focused on asexual innovative evolution

in cancer, our model may be generally applicable to other
innovating populations. Consider a population in a new envi-
ronment. The population is often initially small and fluctuat-
ing in size and often goes extinct, yet occasionally it expands
to a larger stationary size by rapidly acquiring several new
traits that are highly advantageous in the new environment.
Both the evolutionary parameters (53) and observed phenom-
ena (54) match our model well. Our mathematical framework
may explain why these populations sometimes adapt, yet often
fail.
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Fig. 1. Tug-of-war between drivers and passengers leads to a critical population size (A) Population size verses time of simulations

initiated at various sizes. Populations starting above N∗ generally commit to rapid growth (i.e. adaptation) and to extinction below it. (B) A fragment of a trajectory shows

periods of rapid growth and gradual decline. New drivers arrive with a frequency f(N) and abruptly increases the population size by an amount ∆N . Meanwhile, passenger

accumulation causes populations to gradually decline with rate vp. (C) Analytically computed mean velocity of population growth (top) and an effective barrier (bottom)

as a function of population size N . The velocity is negative below N∗ and positive above it. (D) The probability of adaptation (cancer) as a function of initial population

size N (left) and a relative initial population size (N/N∗, right) for nine values of evolutionary parameters. Using the relative size N/N∗ leads to curve collapse, whereby

populations with different evolutionary parameters nevertheless behave similarly. (E) Same as in (D) for simulations and theory but for different values of sd. Higher values of

sd, leads to more gradual transition from non-adaptive to adaptive regime. Excellent agreement between simulations and theory demonstrates accuracy of the theory. In our

formalism, an increase in sd results in a larger jump size ∆N and lower potential barrier, allowing more populations to overcome the barrier (right).
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of passenger alterations in sequenced tumors for several major subtypes. SCNAs and SNMs were aggregated. As predicted by the model, all subtypes exhibit a positive

linear relationship between the number of drivers and passengers (p < 0.08− 10−5). A driver-only model with neutral passengers does not predict this linear relationship.

(Insert) The same genomics data plotted on log axes, with the y-intercept from each subtype’s linear fit subtracted. A linear relationship on logarithmic axes with a slope of

approximately one suggests that the relationship between drivers and passengers is indeed linear.
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Fig. 4. Mapping and interpreting treatment outcomes (A) An adapted population (grown cancer) can be reverted to extinction by increasing the

mutation rate (mutagenic chemotherapy) or by decreasing the population size (e.g. surgery or cytotoxic chemotherapy). Our phase diagrams explains therapeutic outcomes:

therapies that reduce cancer size or increase mutation rate enough to push it outside of an adaptive regime cause continued population collapse; those that do not experience

relapse. (B) (Top) Comparison of the model to clinical data. Cancers with intermediate mutational loads are the most aggressive (4, 13). Patients with intermediate

Chromosomal INstability (CIN) and Loss Of Heterozygosity (LOH) scores are the least likely to survive. Patients with very high CIN are most effectively treated. (Bottom) Our

phase diagrams shows these clinical outcomes: traditional therapies which work by decreasing the population size and/or increase the mutation rate work best for cancers with

the highest mutation rate. (C) Three fold increase in the effect of passenger mutations leads to rapid population meltdown below N∗, thus relapse is unlikely.
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